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Where we are...

= We’'ve seen how Al methods can solve
problems in:
= Searching for a state
= Searching for a solution (CSP)
= Searching for victory (Games)

= Decision Making in Uncertainty (Markov Decision
Problems)

= Nextup: More Uncertainty and Learning!

= Making decisions when we don’t know the
environment dynamics

= Learning about the environment
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3 Forms of Learning

= Supervised Learning: Given training data set, learn the pattern

= Unsupervised Learning: No training data set given, just
learn/observe

= Reinforcement Learning: No training data set given, but you can
make an action and get some feedback. This feedback can be
considered a “mini training episode”, with real cost (or reward).

Not to be confused with habituation, sensitization and associative learning — 3 Mechanisms by which people, or dogs,
or sea slugs learn! Refer to the “Learning to Learn” lecture.
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Reinforcement Learning

\

Agent ‘\\\

State: s ,
Actions: a

Reward: r
/

Environment

(&

= Basic idea:
= Receive feedback in the form of rewards
= Agent’s utility is defined by the reward function
= Must (learn to) act so as to maximize expected rewards
= All learning is based on observed samples of outcomes!
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Reinforcement Learning

= Still assume a Markov decision process (MDP):

= Asetofstatess €S

= Asetof actions (per state) A 5

= A model T(s,a,s’)

= Areward function R(s,a,s’)

= Still looking for a policy 7t(s)

= New twist: don’t know T or R

= Thatis, we don’t know which states are good or what the actions do
" Must actually try actions and states out to learn
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Offline (MDPs) vs. Online (RL)

Offline Solution Online Learning
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Two Broad Categories

= Model Based — We will learn the MDP model (T, R, ...)
" Model Free — We learn the Q, V values directly

———————————————————————————————

Learn Q
and V
values

Model Based

Estimate Estimate
R values T values
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Model-Based Learning

= Model-Based ldea:

" Learn an approximate model based on experiences
= Solve for values as if the learned model were correct

= Step 1: Learn empirical MDP model
= Count outcomes s’ for each s, a
= Normalize to give an estimate of T(s,a,s")
= Discover each R(s,a,s’) when we experience (s, a, s’)

= Step 2: Solve the learned MDP

= For example, use value iteration, as before
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Example: Model-Based Learning

Input Policy ©

Observed Episodes (Training)

Assume:y=1
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Episode 1
B, east, C, -1 A
C, east, D, -1
D, exit, x, +10
\_ J
Episode 3
4 E, north, C, -1 A
C,east, D, -1
D, exit, x, +10
1\ J

Episode 2

\_

B, east, C, -1
C, east, D, -1
D, exit, x, +10

Learned Model

T(s,a,s")

-

Episode 4

\_

4 E, north, C, -1

C, east, A, -1

A, exit,

X, -10

\_

T(B, east, C) = 1.00
T(C, east, D) = 0.75
T(C, east, A) =0.25

~

J

R(s,a,s")

-
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R(B, east, C) =-1
R(C, east, D) =-1
R(D, exit, x) =+10

~

J




Model-Free Learning

= A key mechanism to learn in MDP settings

" |n this, we don’t try to learn T and R values. We learn Q and V
values directly.

= Subtopics
= Passive RL — Evaluating a policy V/Q values for given policy
= Active RL— Learn the policy also

=" Q-Learning — Learn the Q values, using Exponential Moving Average (EMA)
= EMA - Approach
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Exponential Moving Average

= Exponential moving average
* The running interpolation update: =, = (1 — Cl{) cTpn—1+ Q- Ty

" Makes recent samples more important:

Tp+(1—a) Tp1+(1—a)? zp_o+...
I1+(1—-a)+(1—-a)2+...

Ly =

" Forgets about the past (distant past values were wrong anyway)

= Decreasing learning rate (alpha) can give converging averages
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Passive Reinforcement Learning

= Simplified task: policy evaluation

" |nput: a fixed policy 7t(s)

* You don’t know the transitions T(s,a,s’)
= You don’t know the rewards R(s,a,s’)

" Goal: learn the state values

" |n this case:
* Learneris “along for the ride”
= No choice about what actions to take
= Just execute the policy and learn from experience
" This is NOT offline planning! You actually take actions in the world.

Al-4511/6511 GwWuU
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Direct Evaluation

" Goal: Compute values for each state under &t

= |dea: Average together observed sample values

= Act accordingto m

= Every time you visit a state, write down what the
sum of discounted rewards turned out to be

= Average those samples

= This is called direct evaluation

Al-4511/6511 GwWuU
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Example: Direct Evaluation

Input Policy © Observed Episodes (Training) Output Values
Episode 1 Episode 2
B, east, C, -1 N\ ( B, east, C, -1 A
C, east, D, -1 C, east, D, -1
D, exit, x, +10 D, exit, x, +10
- '\ J
Episode 3 Episode 4
4 E, north, C, -1 N\ ( E, north, C, -1 A
C,east, D, -1 C, east, A, -1
D, exit, x, +10 A, exit, x,-10
Assume:y=1
- AN J
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Input Policy ©

Assume:y=1
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Example: Direct Evaluation

B=08*C+0.1*B+0.1*B
>B=C
E=08*C+0.1*E+0.1*E. E=C
Q(C,(E)=0.8*D+0.1*A+0.1*E
C=8-1+0.1*C

C*09=7

01C=1
C = 16w
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Problems with Direct Evaluation

= What's good about direct evaluation? Output Values
" |t's easy to understand

" |t doesn’t require any knowledge of T, R

= |t eventually computes the correct average values,
using just sample transitions

= What bad about it?

® |t wastes information about state connections

If Band E both go to C

under this policy, how can
= So, it takes a long time to learn their values be different?

= Each state must be learned separately
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Sample-Based Policy Evaluation?

= We want to improve our estimate of V by computing these averages:

ka—|—1(3) — ZT(S, 7(s),s)[R(s,m(s),s") + ’)/Vkﬂ(s")]

S
* |dea: Take samples of outcomes s’ (by doing the action!) and average

sample1 = R(s,m(s), 5’1) 1 ’}’Lf(%{[)

samples = R(s,7(s),s5) + vV (s5) |
samplen, = R(s,7(s),s),) + vV, (s,)

1
Vig1(s) < - Z sample;

7
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Active Reinforcement Learning

= Full reinforcement learning: optimal policies (like value iteration)
= You don’t know the transitions T(s,a,s’)
* You don’t know the rewards R(s,a,s’)
" You choose the actions now
» Goal: learn the optimal policy / values

" |n this case:
" Learner makes choices!
* Fundamental tradeoff: exploration vs. exploitation

* This is NOT offline planning! You actually take actions in the world and
find out what happens...

Al-4511/6511 GwWuU
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Q-Value Iteration

= Value iteration: find successive (depth-limited) values
= Start with V,(s) =0, which we know is right
= Given V,, calculate the depth k+1 values for all states:

Viet1(s) < mEXZT(sja, s") ’R(sjaj s + WV;Q(SI)}

= But Q-values are more useful, so compute them instead
= Start with Qg(s,a) = 0, which we know is right
= Given Q,, calculate the depth k+1 g-values for all g-states:

Qr+1(s,a) ) T(s,a,s) [R(S, a,s') +~ maxQy(s',a’)

Al-4511/6511 GwWuU
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In MDPs in general

V*(s) = max Q" (s, a)
Q*(s,a) =) T(s,a, s) {R(s, a,s) + '}fV*(s’)]

V*(s) = maaXZT(s,a, s") [R(S,CL, s") + ny*(s’)}

S

" From Q values, we can compute V values trivially

" From V values, we can compute Q values, but that takes some
computation..

= Therefore, if you only want to compute and store one set of
values, Q values is an easier choice.

Al-4511/6511 GwWuU
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Q-Learning

= We'd like to do Q-value updates to each Q-state:
Qrt1(s,a) « Y T(s,a,s") [R(S, a,s') +v maxQy (s, a’)
S,r (1l

= But can’t compute this update without knowing T, R

" |nstead, compute average as we go

= Receive a sample transition (s,a,s’) with a living reward of r
= This sample suggests

Q(s,a) ~ 7+ ymaxQ(s',a)
I."l';

= But we want to average over results from (s,a) (Why?)
= So keep a running average

Q(s,a) — (1 - a)Q(s,a) + (@) |r +ymax Q(s',a’)

Al-4511/6511 GwWuU
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Q-Learning

" UpdateQValues(Q)

" |n state s, choose action a 2 Env returns s’,r

" Use Max to compute vs’ -> This uses current Q

" Q(s,a) =(1-alpha) Q(s,a) + alpha * (r + gamma * vs’)
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Q-Learning Properties

= Amazing result: Q-learning converges to optimal policy -- even
if you're acting suboptimally!

= This is called off-policy learning

= Caveats:
" You have to explore enough

" You have to eventually make the learning rate
small enough

= ... but not decrease it too quickly
= Basically, in the limit, it doesn’t matter how you select actions (!)

Al-4511/6511 GwWuU
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Q
R
Q

Q

Time to Recap!

_is simple.
_ IS easy.
_ IS intuitive.

_ (online learning) is very different from MDPs (offline planning)

" We can explain what RL is, in a few sentences to someone who

doesn’t know RL, including two broad categories of RL.

(Try this in the breakout room.)
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Exploration vs. Exploitation
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Schemes for Forcing Exploration

Exploration
Function Regret (Result
Random (Count/density based)

based)

GWU
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Random Exploration

" Simplest: random actions (e-greedy)
= Every time step, flip a coin
= With (small) probability €, act randomly
= With (large) probability 1-¢, act on current policy

= Problems with random actions?

" You do eventually explore the space, but keep
thrashing around once learning is done

= One solution: lower € over time

Al-4511/6511 GwWuU
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Exploration Functions

= Main idea

= Explore areas whose badness is not
(yet) established, eventually stop exploring

" How to implement

= Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g.

f(u,n) =u—+k/n

Regular Q-Update: Q(s,a) <« R(s,a,s") + max Q(s', a")
{1

Modified Q-Update:  Q(s,a) a R(s,a, ')+~ max f(Q(sa), N (s, a)
#)

= Note: this propagates the “bonus” back to states that lead to unknown states as well!
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Regret

= Even if you learn the optimal policy, you still
make mistakes along the way!

= Regretis a measure of your total mistake
cost: the difference between actual rewards
and optimal (expected) rewards

Empirically: Random exploration and
exploration functions both end up optimal,
but random exploration has higher regret.
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Despite all our efforts...

REINFORCEMENT LEARNING IS OUT
OF SPACE

Al-4511/6511 GwWU
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Generalizing Across States

= Basic Q-Learning keeps a table of all g-values

" |n realistic situations, we cannot possibly learn
about every single state!
®= Too many states to visit them all in training
= Too many states to hold the g-tables in memory

" |nstead, we want to generalize:

= Learn about some small number of training states from
experience
= Generalize that experience to new, similar situations

* This is a fundamental idea in machine learning, and we’ll
see it repeatedly
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Let’s say we discover
through experience that
this state is bad:

Al-4511/6511

Example: Pacman

In naive g-learning, we
know nothing about this
state:

GwWuU

Or even this one!
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Feature-Based Representations

= Solution: describe a state using a vector of
features (properties)

= Features are functions from states to real numbers
(often 0/1) that capture important properties of the
state

= Example features:
= Distance to closest ghost
= Distance to closest dot
= Number of ghosts
1 / (dist to dot)?
Is Pacman in a tunnel? (0/1)

Is it the exact state on this slide?

= Can also describe a g-state (s, a) with features (e.g.
action moves closer to food)

Al-4511/6511 GwWuU
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Linear Value Functions

= Using a feature representation, we can write a g function (or value function) for any
state using a few weights:

V(s) =wif1(s) +wafo(s) + ... +wnfn(s)
Q(s,a) = wiy f1(s,a)+wafa(s,a)+...Fwnfn(s,a)

= Advantage: our experience is summed up in a few powerful numbers

= Disadvantage: states may share features but actually be very different in value!
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Approximate Q-Learning

[ Qs, @) = w1 f1(s, a)Fwafals, a)F- . ~4wnfnls,a) ]

= Q-learning with linear Q-functions:

tranSItiOH — (S: a,T, S;)

difference = |r + vy max Q(s, u.’)} — Q(s,a)
Q(s,a) «— Q(s,a) + a [difference] Exact Q’s

w; «— w; + « [difference] f;(s,a)  Approximate Q’s

" |ntuitive interpretation:
= Adjust weights of active features

= E.g., if something unexpectedly bad happens, blame the features that were on:
disprefer all states with that state’s features

= Formal justification: online least squares
Al-4511/6511 GWU 36



Example: Q-Pacman

Q(s,a) = 4.0fpor(s,a) — 1.0fgs7T(s,a)

fpor(s, NORTH) = 0.5

fasr(s, NORTH) = 1.0

) 4
a :=N E);S’EH S /
J o

Al-4511/6511

Q(s,NORTH) = +1
r+~vymaxQ(s’,a") = —500
ﬂlf

0

{difference = —501 >

wpoTt +— 4.0+ «[-501]0.5
wasT ¢ —1.0 4+ a[-501] 1.0

Q(s,a) = 3.0fpor(s,a) —3.0fqsr(s,a)
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Q-Learning and Least Squares

GwWuU

38



Linear Approximation: Regression™

20

f1(x)

Prediction:

y = wo + wi f1(x)

Al-4511/6511 GWU

Prediction:

y; = wo + wi f1(z) + wafo(x)
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Optimization: Least Squares™

1

2
total error = Z (y; — 3};)2 =) (’m — Zwkfk(mi))
p k

_ Error or “residual”
Observation y

Prediction :l//\ -------------

1 /
0 20
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Minimizing Error*

Imagine we had only one point x, with features f(x), target value y, and weights w:

2
error(w) — % ('y — Zwkfk(a:))
k
%, e;ror(w) = _ (y — Z’wkfk(m)) fm(x)
Wi L

W — wm + a (U - wkfk(m)) fm(z)
k

Approximate g update explained:

wm — wm +a [r +5mMaxQ(s',d) = Q(s,a)| fim(s, a)

“target” “prediction”
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Credit Assignment Problem

= Not easy to identify credit for each move in a Chess game

= |f credit is only given at the end of the game, then..
= Many good moves can get a negative credit if the end result is a loss
= Many bad moves can get a positive credit if the end resultis a win
= Many many games need to be played before learning really happens

= One solution is to give rewards early on (Reward Shaping)
= |f we try to give rewards early on, then..

= Agent will maximize on those rewards, not the actual outcome

Al-4511/6511 GwWuU
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Reinforcement Learning Application Examples

= https://sagemaker-
examples.readthedocs.io/en/latest/reinforcement learning/rl m

ountain car coach gymEnv/rl mountain car coach symEnv.ht
ml
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Let’s (not) get historical

= Q-learning was introduced by Chris Watkins in 1989.
= Convergence proof by Watkins and Dayan in 1992.

" |n 1981 “Delayed reinforcement learning”, presented by Bozinovski's Crossbar Adaptive
Array (CAA).

= The term “secondary reinforcement” is borrowed from animal learning theory, to
model state values via backpropagation: the state value of the consequence situation is
backpropagated to the previously encountered situations.

= |n 2014, Google DeepMind patented an application of Q-learning to deep learning,
titled "deep reinforcement learning" or "deep Q-learning" that can play Atari 2600
games at expert human levels.

= https://patentimages.storage.googleapis.com/71/91/4a/c5cf4ffa56f705/US201501005
30A1.pdf
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Summary

Al-4511/6511

Introduction
= What is Reinforcement Learning
= Handling MDPs, when we don't know T and R functions.
Two broad categories of Reinforcement Learning (RL)
= Model Based - Simply try and learn T and R values. Then, calculate Q, V as usual.
= Model Free - Don't worry about T and R values. Learn Q, V values directly.

= Q-Learning: Algorithm to learn Q values by trying. Update Q value using something like exponential moving average
= [A useful background technique - Exponential Moving Average]

Exploration vs. exploitation in RL

= Quantify exploration vs. exploitation

= 3 methods: Random, Exploration function, Regret

= How much exploration to do - how to make it "time" based (Like in case of simulated annealing)

= How to make it time based for each state, action combination (Exploration can go down with time)
Advanced Topics

= Whatis credit assignment problem in RL?

= |s it more of a problem in case of episodic environment or non-episodic environments?

= How we can use reward shaping (and what are the problems associated with it)?

= [Not discussed in class] How can we make a generic technique for reward shaping that is not environment
based?
GWU 45



10 Al Commandments

7. “The doer alone learneth.” Reinforcement Learning

Al-4511/6511 GWU 46



Conclusion

= We're done with Part I: Search and Planning!

= We just started Learning!

Al-4511/6511 GWU a7



	Slide 1: CS 6511: Artificial Intelligence
	Slide 2: Where we are…
	Slide 3: 3 Forms of Learning
	Slide 4: Reinforcement Learning
	Slide 5: Reinforcement Learning
	Slide 6: Offline (MDPs) vs. Online (RL)
	Slide 7: Two Broad Categories
	Slide 8: Model-Based Learning
	Slide 9: Example: Model-Based Learning
	Slide 10: Model-Free Learning
	Slide 11: Exponential Moving Average
	Slide 12: Passive Reinforcement Learning
	Slide 13: Direct Evaluation
	Slide 14: Example: Direct Evaluation
	Slide 15: Example: Direct Evaluation
	Slide 16: Problems with Direct Evaluation
	Slide 18: Sample-Based Policy Evaluation?
	Slide 19: Active Reinforcement Learning
	Slide 20: Q-Value Iteration
	Slide 21: In MDPs in general
	Slide 22: Q-Learning
	Slide 23: Q-Learning
	Slide 24: Q-Learning Properties
	Slide 25: Time to Recap!
	Slide 26: Exploration vs. Exploitation
	Slide 27: Schemes for Forcing Exploration
	Slide 28: Random Exploration
	Slide 29: Exploration Functions
	Slide 30: Regret
	Slide 31: Reinforcement learning is out of space
	Slide 32: Generalizing Across States
	Slide 33: Example: Pacman
	Slide 34: Feature-Based Representations
	Slide 35: Linear Value Functions
	Slide 36: Approximate Q-Learning
	Slide 37: Example: Q-Pacman
	Slide 38: Q-Learning and Least Squares
	Slide 39: Linear Approximation: Regression*
	Slide 40: Optimization: Least Squares*
	Slide 41: Minimizing Error*
	Slide 42: Credit Assignment Problem
	Slide 43: Reinforcement Learning Application Examples 
	Slide 44: Let’s (not) get historical
	Slide 45: Summary
	Slide 46: 10 AI Commandments
	Slide 47: Conclusion

