CS 6511: Artificial Intelligence Reinforcement Learning

The George Washington University

[Original version of these slides was created by Dan Klein and Pieter Abbeel for Intro to AI at UC Berkeley. http://ai.berkeley.edu]

Where we are...

- We've seen how AI methods can solve problems in:
 - Searching for a state
 - Searching for a solution (CSP)
 - Searching for victory (Games)
 - Decision Making in Uncertainty (Markov Decision Problems)
- Next up: More Uncertainty and Learning!
 - Making decisions when we don't know the environment dynamics
 - Learning about the environment

3 Forms of Learning

- Supervised Learning: Given training data set, learn the pattern
- Unsupervised Learning: No training data set given, just learn/observe
- Reinforcement Learning: No training data set given, but you can make an action and get some feedback. This feedback can be considered a "mini training episode", with real cost (or reward).

Not to be confused with habituation, sensitization and associative learning – 3 Mechanisms by which people, or dogs, or sea slugs learn! Refer to the "Learning to Learn" lecture.

Reinforcement Learning

- Basic idea:
 - Receive feedback in the form of rewards
 - Agent's utility is defined by the reward function
 - Must (learn to) act so as to maximize expected rewards
 - All learning is based on observed samples of outcomes!

Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states s ∈ S
 - A set of actions (per state) A
 - A model T(s,a,s')
 - A reward function R(s,a,s')
- Still looking for a policy π(s)

- New twist: don't know T or R
 - That is, we don't know which states are good or what the actions do
 - Must actually try actions and states out to learn

Offline (MDPs) vs. Online (RL)

Offline Solution

Online Learning

Two Broad Categories

- Model Based We will learn the MDP model (T, R, ...)
- Model Free We learn the Q, V values directly

Model-Based Learning

- Model-Based Idea:
 - Learn an approximate model based on experiences
 - Solve for values as if the learned model were correct
- Step 1: Learn empirical MDP model
 - Count outcomes s' for each s, a
 - Normalize to give an estimate of $\hat{T}(s, a, s')$
 - Discover each $\hat{R}(s, a, s')$ when we experience (s, a, s')
- Step 2: Solve the learned MDP
 - For example, use value iteration, as before

Example: Model-Based Learning

Model-Free Learning

- A key mechanism to learn in MDP settings
- In this, we don't try to learn T and R values. We learn Q and V values directly.

- Subtopics
 - Passive RL Evaluating a policy V/Q values for given policy
 - Active RL Learn the policy also
 - Q-Learning Learn the Q values, using Exponential Moving Average (EMA)
 - EMA Approach

Exponential Moving Average

- Exponential moving average
 - The running interpolation update: $\bar{x}_n = (1 \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n$
 - Makes recent samples more important:

$$\bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \dots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \dots}$$

- Forgets about the past (distant past values were wrong anyway)
- Decreasing learning rate (alpha) can give converging averages

Passive Reinforcement Learning

Simplified task: policy evaluation

- Input: a fixed policy π(s)
- You don't know the transitions T(s,a,s')
- You don't know the rewards R(s,a,s')
- Goal: learn the state values

- In this case:
 - Learner is "along for the ride"
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - This is NOT offline planning! You actually take actions in the world.

Direct Evaluation

- Goal: Compute values for each state under π
- Idea: Average together observed sample values
 - Act according to π
 - Every time you visit a state, write down what the sum of discounted rewards turned out to be
 - Average those samples
- This is called direct evaluation

Example: Direct Evaluation

Example: Direct Evaluation

Input Policy π

Assume: $\gamma = 1$

B = 0.8 * C + 0.1 * B + 0.1 * B

→ B = C

E = 0.8 * C + 0.1 * E + 0.1 * E. E = C

Q(C,(E)) = 0.8 * D + 0.1 * A + 0.1 * E C = 8 -1 + 0.1 * C C * 0.9 = 7

Q(C,(S)) = 0.8 * E + 0.1 * B + 0.1 * D C = 0.9 C + 1

0.1 C = 1 $C = 10^{\text{WU}}$

Problems with Direct Evaluation

- What's good about direct evaluation?
 - It's easy to understand
 - It doesn't require any knowledge of T, R
 - It eventually computes the correct average values, using just sample transitions
- What bad about it?
 - It wastes information about state connections
 - Each state must be learned separately
 - So, it takes a long time to learn

Output Values

If B and E both go to C under this policy, how can their values be different?

Sample-Based Policy Evaluation?

We want to improve our estimate of V by computing these averages:

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

Idea: Take samples of outcomes s' (by doing the action!) and average

$$sample_{1} = R(s, \pi(s), s_{1}') + \gamma V_{k}^{\pi}(s_{1}')$$

$$sample_{2} = R(s, \pi(s), s_{2}') + \gamma V_{k}^{\pi}(s_{2}')$$

$$\dots$$

$$sample_{n} = R(s, \pi(s), s_{n}') + \gamma V_{k}^{\pi}(s_{n}')$$

$$V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_{i} sample_{i}$$

Active Reinforcement Learning

- Full reinforcement learning: optimal policies (like value iteration)
 - You don't know the transitions T(s,a,s')
 - You don't know the rewards R(s,a,s')
 - You choose the actions now
 - Goal: learn the optimal policy / values

In this case:

- Learner makes choices!
- Fundamental tradeoff: exploration vs. exploitation
- This is NOT offline planning! You actually take actions in the world and find out what happens...

Q-Value Iteration

- Value iteration: find successive (depth-limited) values
 - Start with V₀(s) = 0, which we know is right
 - Given V_k, calculate the depth k+1 values for all states:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- But Q-values are more useful, so compute them instead
 - Start with Q₀(s,a) = 0, which we know is right
 - Given Q_k, calculate the depth k+1 q-values for all q-states:

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

In MDPs in general

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$
$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$
$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

- From Q values, we can compute V values trivially
- From V values, we can compute Q values, but that takes some computation..
- Therefore, if you only want to compute and store one set of values, Q values is an easier choice.

Q-Learning

We'd like to do Q-value updates to each Q-state:

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

- But can't compute this update without knowing T, R
- Instead, compute average as we go
 - Receive a sample transition (s,a,s') with a living reward of r
 - This sample suggests

 $Q(s,a) \approx r + \gamma \max_{a'} Q(s',a')$

- But we want to average over results from (s,a) (Why?)
- So keep a running average

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) \left[r + \gamma \max_{a'} Q(s',a') \right]$$

Q-Learning

- UpdateQValues(Q)
- In state s, choose action a \rightarrow Env returns s',r
- Use Max to compute vs' -> This uses current Q
- Q(s,a) = (1-alpha) Q(s,a) + alpha * (r + gamma * vs')

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you're acting suboptimally!
- This is called off-policy learning
- Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - ... but not decrease it too quickly
 - Basically, in the limit, it doesn't matter how you select actions (!)

Time to Recap!

- RL is simple.
- RL is easy.
- RL is intuitive.
- RL (online learning) is very different from MDPs (offline planning)
- We can explain what RL is, in a few sentences to someone who doesn't know RL, including two broad categories of RL.

(Try this in the breakout room.)

Exploration vs. Exploitation

Schemes for Forcing Exploration

Random Exploration

Simplest: random actions (ε-greedy)

- Every time step, flip a coin
- With (small) probability ε, act randomly
- With (large) probability 1-ε, act on current policy

Problems with random actions?

- You do eventually explore the space, but keep thrashing around once learning is done
- One solution: lower ϵ over time

Exploration Functions

Main idea

 Explore areas whose badness is not (yet) established, eventually stop exploring

How to implement

 Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g.

$$f(u,n) = u + k/r$$

Regular Q-Update:

$$Q(s,a) \leftarrow_{\alpha} R(s,a,s') + \gamma \max_{a'} Q(s',a')$$

Modified Q-Update:

$$Q(s,a) \leftarrow_{\alpha} R(s,a,s') + \gamma \max_{a'} f(Q(s',a'), N(s',a'))$$

Note: this propagates the "bonus" back to states that lead to unknown states as well!

Regret

- Even if you learn the optimal policy, you still make mistakes along the way!
- Regret is a measure of your total mistake cost: the difference between actual rewards and optimal (expected) rewards

Empirically: Random exploration and exploration functions both end up optimal, but random exploration has higher regret.

Despite all our efforts...

REINFORCEMENT LEARNING IS OUT OF SPACE

WALT CHRISTMAS

Generalizing Across States

- Basic Q-Learning keeps a table of all q-values
- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory
- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar situations
 - This is a fundamental idea in machine learning, and we'll see it repeatedly

Example: Pacman

Let's say we discover through experience that this state is bad: In naïve q-learning, we know nothing about this state:

Or even this one!

Feature-Based Representations

- Solution: describe a state using a vector of features (properties)
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - 1 / (dist to dot)²
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Is it the exact state on this slide?
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)

Linear Value Functions

Using a feature representation, we can write a q function (or value function) for any state using a few weights:

$$V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \ldots + w_n f_n(s,a)$$

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \ldots + w_n f_n(s,a)$$

Q-learning with linear Q-functions:

transition =
$$(s, a, r, s')$$

difference = $\left[r + \gamma \max_{a'} Q(s', a')\right] - Q(s, a)$
 $Q(s, a) \leftarrow Q(s, a) + \alpha$ [difference] Exact Q'
 $w_i \leftarrow w_i + \alpha$ [difference] $f_i(s, a)$ Approxim

kimate Q's

- Intuitive interpretation:
 - Adjust weights of active features
 - E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features

```
• Formal justification: online least squares
                                             GWU
```


Example: Q-Pacman

$$Q(s,a) = 4.0 f_{DOT}(s,a) - 1.0 f_{GST}(s,a)$$

$$Q(s,a) = 3.0 f_{DOT}(s,a) - 3.0 f_{GST}(s,a)$$

AI-4511/6511

Q-Learning and Least Squares

Linear Approximation: Regression*

Prediction:

$$\hat{y} = w_0 + w_1 f_1(x)$$

Prediction:

$$\hat{y}_i = w_0 + w_1 f_1(x) + w_2 f_2(x)$$

GWU

Optimization: Least Squares*

Minimizing Error*

Imagine we had only one point x, with features f(x), target value y, and weights w:

$$\operatorname{error}(w) = \frac{1}{2} \left(y - \sum_{k} w_{k} f_{k}(x) \right)^{2}$$

$$\frac{\partial \operatorname{error}(w)}{\partial w_{m}} = - \left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$

$$w_{m} \leftarrow w_{m} + \alpha \left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$

Approximate q update explained:

$$w_m \leftarrow w_m + \alpha \left[r + \gamma \max_a Q(s', a') - Q(s, a) \right] f_m(s, a)$$

"target" "prediction"

AI-4511/6511

GWU

Credit Assignment Problem

- Not easy to identify credit for each move in a Chess game
- If credit is only given at the end of the game, then..
 - Many good moves can get a negative credit if the end result is a loss
 - Many bad moves can get a positive credit if the end result is a win
 - Many many games need to be played before learning really happens
- One solution is to give rewards early on (Reward Shaping)
- If we try to give rewards early on, then..
 - Agent will maximize on those rewards, not the actual outcome

Reinforcement Learning Application Examples

 <u>https://sagemaker-</u> <u>examples.readthedocs.io/en/latest/reinforcement_learning/rl_m</u> <u>ountain_car_coach_gymEnv/rl_mountain_car_coach_gymEnv.ht</u> <u>ml</u>

Let's (not) get historical

- Q-learning was introduced by Chris Watkins in 1989.
- Convergence proof by Watkins and Dayan in 1992.
- In 1981 "Delayed reinforcement learning", presented by Bozinovski's Crossbar Adaptive Array (CAA).
- The term "secondary reinforcement" is borrowed from animal learning theory, to model state values via backpropagation: the state value of the consequence situation is backpropagated to the previously encountered situations.
- In 2014, Google DeepMind patented an application of Q-learning to deep learning, titled "deep reinforcement learning" or "deep Q-learning" that can play Atari 2600 games at expert human levels.
- https://patentimages.storage.googleapis.com/71/91/4a/c5cf4ffa56f705/US201501005
 <u>30A1.pdf</u>

- Introduction
 - What is Reinforcement Learning
 - Handling MDPs, when we don't know T and R functions.
- Two broad categories of Reinforcement Learning (RL)
 - Model Based Simply try and learn T and R values. Then, calculate Q, V as usual.
 - Model Free Don't worry about T and R values. Learn Q, V values directly.
 - Q-Learning: Algorithm to learn Q values by trying. Update Q value using something like exponential moving average
 - [A useful background technique Exponential Moving Average]
- Exploration vs. exploitation in RL
 - Quantify exploration vs. exploitation
 - 3 methods: Random, Exploration function, Regret
 - How much exploration to do how to make it "time" based (Like in case of simulated annealing)
 - How to make it time based for each state, action combination (Exploration can go down with time)
- Advanced Topics
 - What is credit assignment problem in RL?
 - Is it more of a problem in case of episodic environment or non-episodic environments?
 - How we can use reward shaping (and what are the problems associated with it)?
 - In [Not discussed in class] How can we make a generic technique for reward shaping that is not environment based?

Summary

10 AI Commandments

- 1. "No model is perfect, but some models are useful" General AI and ML
- 2. "The algorithms that forget their history are doomed to repeat it." Graph Search vs. Tree Search
- *3. "Ask not what the state can do for you, ask what you can do in that state." Successor function concept in search problems*
- 4. "Your direction is more important than your speed" Informed search vs. uninformed search
- 5. "Fail early. Fail often. Fail forward". Constraint Satisfaction Problems
- 6. *"Reality dishes out experiences using probability, not plausibility." Expectimax and MDPs*
- 7. "The doer alone learneth." Reinforcement Learning

Conclusion

- We're done with Part I: Search and Planning!
- We just started Learning!

