
 Artificial Intelligence George Washington University Amrinder Arora

Download again? https://is.gd/q4uANh

SEARCHING

Uninformed Search
Depth-First Search: Strategy: expand a

deepest node first. Implemented as LIFO

stack. Very space (memory) efficient.

Breadth First Search: Strategy: expand

the shallowest node first. Implemented

as FIFO queue. Finds the shortest path in

terms of number of actions.

Iterative Deepening: Combines the

advantage of DFS’s space and BFS’s

time/shallow-solution.

Uniform Cost Search (UCS): Like BFS,

but takes cost (edge weights) into

account. Expand a cheapest (lowest cost)

node first. Fringe is a priority queue.

UCS is optimal and complete.

Informed Search
Informed search algorithms involve the

concepts of “direction” which can be fed

to the algorithm through heuristics. A

heuristic is a function that estimates how

close a state is to a goal, and is designed

for a particular problem.

Greedy Search (Best-First): Expands

the node that seems the closest to a goal

state. It can provide wrong solutions.

A* Search: Combines uniform cost

search (backward cost g(n)) and greedy

search (forward cost h(n)). A* expands

toward the goal and hedge its bets to

ensure optimality as opposed to uniform

cost which expands equally in all

directions. To have an optimal solution

in tree search, h(n) must be admissible.

0 <= h(n) <= h*(n) where h*(n) is the true

cost to a nearest goal.

In graph search, the heuristics must be

consistent which implies admissibility.

Adversarial Search (MinMax)
Players alternate turns and the agent

computes each node’s minmax value (the

best achievable utility). Example: tic-tac-

toe, chess. Alpha Beta Pruning:

Remove nodes that will not affect the

final outcome.

Local Search
Hill Climbing: 1. Start from any state 2.

Repeat until no neighbors better than

current: move to best neighboring state.

Simulated Annealing: Escapes local

maxima by allowing downhill moves.

Constraint Satisfaction Problem
A state is defined by variables Xi with

values from a domain D. Goal test is a set

of constraints specifying allowable

combinations of values for subsets of

variables. It can be implemented using

graph structure to speed up the search.

Variables can discrete (finite or infinite

domains) or continuous. Constraints can

be unary, binary, higher order

constraints. Constraints can be soft.

Example: map coloring, n-queen, Sudoku,

assignment problem.

Backtracking uninformed search can be

used to solve CSPs. It is the same as depth

first search with two improvements: 1. Get

one variable at a time 2. Check constraints

as you go. Backtracking can be further

improved using ordering (minimum

remaining values/least constraining value)

and filtering (forward checking/constraint

propagation) concepts (removing domain

values that already do not match).

MAKING DECISIONS

Markov Decision Processes
An MDP is defined by a set of states, set

of actions, transition function, reward

function, and start state. It is non-

deterministic search problem. It is used

to compute optimal values using value

iteration or policy iteration. It can be

used compute values for a particular

https://is.gd/q4uANh

 Artificial Intelligence George Washington University Amrinder Arora

Download again? https://is.gd/q4uANh

policy using policy evaluation or turn

values into policy using policy extraction.

Discounting: Quantifies the preference

for immediate rewards rather than long-

term rewards.

Recursive definitions of values:

Value iteration: Start with V0(s) = 0: no

time steps left means Given vector of

Vk(s) values, do one ply of expectimax

from each state: an expected reward sum

of zero. Repeat until convergence.

Policy Evaluation: Evaluate one given

policy. This is easier: we know the

action, so we do not need max function.

Solve it as a set of linear equations!

Policy Iteration: Start with a random

policy. In a loop, do:

(i) Evaluate current policy

(ii) Extract the new policy based on

values

(iii) Change that to the new policy

The new policy will be better (or we’re

done).

LEARNING

Reinforcement Learning
We assume a Markov decision process

and are looking for optimal policy. But

we don’t know the model T or the

reward R. Model-Based Learning: 1.

Learn an approximate model based on

experiences 2. Solve for values as if the

learned model were correct. Direct

evaluation: compute values (average

observed sample values) for each state

under a policy.

Model-Free Learning: Learn the Q/V

values directly. Example: Q-Learning:

Sample-based Q-value iteration.

1. Receive a sample (s,a,s’,r)

2. Consider your old estimate. Q(s,a)

3. Consider your new sample estimate.

sample = R(s,a,s’) + max Q(s’,a’)

4. Incorporate the new estimate into a

running average.

Q(s,a) (1-) Q(s,a) + [sample]

Exploration vs. Exploitation:

Quantitatively balance exploration

(trying new actions) and exploitation

(making the best-known action). We can

use -greedy algorithm, use exploration

functions, minimize Regret, etc.

Markov Models
We want to reason about a sequence of

observations. Same as MDP transition

model, but no choice of action. Joint

distribution can be written as:

Bayes Theorem
How to write p(A/B) in terms of p(B/A).

Generally, we know the probability of

effect given a cause. We usually want to

know the probability of a cause, when

observing an effect.

Hidden Markov Models
Underlying Markov chain over states X.

You observe outputs (effects or

emissions) at each time step. Example:

weather

We use observations to update belief.

Joint distribution:

We use the Viterbi Dynamic

Programming Algorithm to find the Most

Likely Explanation (MLE).

https://is.gd/q4uANh
https://is.gd/q4uANh

	Uninformed Search
	Depth-First Search: Strategy: expand a deepest node first. Implemented as LIFO stack. Very space (memory) efficient.
	Breadth First Search: Strategy: expand the shallowest node first. Implemented as FIFO queue. Finds the shortest path in terms of number of actions.
	Informed Search
	Adversarial Search (MinMax)
	Local Search
	Constraint Satisfaction Problem
	Markov Decision Processes
	Reinforcement Learning
	Markov Models
	Bayes Theorem
	Hidden Markov Models

