
Algorithms – Design and Analysis George Washington University Amrinder Arora

 Download again? https://is.gd/q4uANh

ALGORITHMIC TECHNIQUES

Divide and Conquer

Generalization Step
Solve(P)→Solve(P,Start,End)

Algorithm
divide_conquer(input I)
 if (input is small enough) - solve directly
 // THE DIVIDE STEP
 divide I into parts I1, I2,...
 call divide_conquer(I1)
 call divide_conquer(I2)
 ...
 // THE MERGE STEP
 Merge subsolutions

Recurrence Relations
Based on how you divide (number of

subproblems, and size of each subproblem) and

how long it takes to merge the subsolutions, the

recurrence relation is established, which then

determines the overall running time of your

solution. Examples:

• T(n) = 2 T(n/2) + cn  O(n log n)

[Two subproblems of half the original

size, linear time in dividing and merging]

• T(n) = T(9n/10) + cn  O(n)

• T(n) = 8 T(n/2) + cn  O(n3)

• T(n) = 2 T(n/2) + cn2  O(n2)

Greedy Method
Build a complete solution by making a sequence

of “best selection steps”.

Works well if the problem exhibits “greedy

choice property”, that is, globally optimal

solution can be arrived at by making a locally

optimal choice. For example: An optimal

minimum spanning tree can be built by selecting

the smallest weighted “eligible” edge.

Dynamic Programming
Compute solution bottom up by combining

subsolutions. Store the results of subsolutions to

avoid recomputation of subproblems.

Think of DP when you see (i) optimal

substructure and (ii) overlapping subproblems.

Template (Mnemonic: NORA)

1. Develop a Notation that can express a

subsolution for the given problem: “Say s(P,i)

represents the solution to problem instance

P, assuming we start at i.”

2. Check if the Optimal Substructure (Principle

of Optimality) holds.

3. Develop a Recurrence relation that allows

building a solution from the subsolutions.

4. Develop the bottom up Algorithm.

For example: Given n real (positive/negative)

numbers A(1) ... A(n), determine a contiguous

subsequence A(i) ... A(j) for which the sum of

elements in the subsequence is maximized.

Branch and Bound
More general technique, can be used to solve

many optimization problems, even those that are

NP-complete.

Basic Template
1. Describe the solution space as a graph

2. Do a Breadth First Search

3. Evaluate nodes for upper and lower bounds

4. Branch into the “best” node

5. Prune nodes via elimination rules

6. Terminate if performance goals met

How to develop bounds
Branch and Bound depends upon being able to

“bound” nodes effectively in the search tree.

For a minimization problem: Find a lower bound

by making some observation that cost can be no

lower than value “x”, usually by relaxing the

problem so that a simpler approach (say greedy)

might work, even though the solution may not be

a feasible solution to the original problem.

Find an upper bound by using a known solution.

For maximization problem: Lower bound is any

feasible solution. Upper bound is theoretical.

Termination criteria: B&B is used for hard

problems, so keep an eye on target performance

of the solution. E.g., if it is OK to find a solution

that costs at most 5% more than optimal, then

use that to find terminating conditions.

Backtracking
A problem like Sudoku, or knapsack can be

solved by building partial solutions, discarding

the ones that don’t work and backtracking in the

solution search tree to try a different solution.

Depending on the discarding mechanism, this

can be very efficient technique!

Algorithms – Design and Analysis George Washington University Amrinder Arora

 Download again? https://is.gd/q4uANh

PROBLEM COMPLEXITY AND CLASSES

NP-Completeness
We consider two classes of problems: P and NP.

Class P consists of problems that can be solved in

polynomial time. Class NP consists of problems,

for which you can verify a given solution in

polynomial time. An NP-Complete problem is a

problem which can be considered a “central” (or

complete) problem for all problems in class NP.

Class “NPC” is the class of all NP-complete

problems. Essentially, class NPC consists of hard

problems for which polynomial time algorithms

are not known to exist. The reason we try to

find if a problem is NP-complete is to determine

if it is hard. If we prove that a given problem is

NP-complete, we can convince others, if

required, that the problem is hard, and our

efforts are more justified in other ways of

tackling NP-Completeness.

A Fascinating Open Problem
If you (or someone else) finds a polynomial time

algorithm for an NP-complete problem, that is

equivalent of finding a polynomial time algorithm

for ALL problems in NP, and will also imply that

classes P and NP are in fact the same. THAT

WILL BE HUGE! You will be rich! $$$$.

Similarly, if you find that a particular NP-

complete problem cannot be solved in

polynomial time using our current computation

models – that would prove that these classes are

in fact distinct. That would also be huge!

How to prove that problem X is NP-

complete?
To prove that problem X is NP-complete, we

have to start with a known NP-complete

problem, and reduce that to our problem X.

Mnemonic: SoX – ReStoX (SAT Outside the box –

X Inside – Reduce SAT to X).

Tackling NP-Completeness
Strategy 1 – “Context”: Look for simplifications

in data and context that render the problem

solvable in polynomial time.

Strategy 2 – “Find low Exponent”: Look for

improvements in running time which make the

exponential “bearable.”

Strategy 3 – “Approximate and Refine”:

Understand performance bounds that are

acceptable practically, and use approximation

algorithms.

Beyond class NP
Some problems are provably undecidable,

irrespective of the time we spend on it.

APPLYING ALL THIS

Tips and Tricks
1. Remember the time when you brought that

hamster home. When you named it Pete,

your family knew it was your pet, and it was

going to stay. Naming is your friend. If you

can name it, you can own it. Start with a

good notation: “Let S(n,m) represent ….”)

2. Avoid premature optimizations, something

that only work on some inputs.

3. Generalization can help you in using divide

and conquer and recursive solutions.

6212 Solution Process

Phase 1 – Define Your Problem
1. Draw a box, with inputs and outputs

2. (Important) Name the box (Hint: Generic

word like “solver” is not a name.)

Phase 2 – Solve Your Problem
1. What is the brute force time complexity?

2. Try different algorithmic design techniques

and different data structures if needed.

3. If the problem appears very hard, is it NP-

complete? Can we prove that, and tackle its

NP-completeness?

Learning to Learn
Don’t forget the Ebbinghaus forgetting curve. If

you review something 4 times, say once shortly

after learning, once after a day, once after a

week and another time after a month, there is a

very good chance you will remember it forever.

Your chance of learning and remembering

something increases if you explain that to

someone. Volunteering to give a presentation on

a topic is an excellent way to learn it even

further.

(Last, but not Least!) People Matter
Don’t forget that a big part of graduate

education is building your network of friends.

	Divide and Conquer
	Generalization Step
	Algorithm
	Recurrence Relations

	Greedy Method
	Dynamic Programming
	Template (Mnemonic: NORA)

	Branch and Bound
	Basic Template
	How to develop bounds

	Backtracking
	NP-Completeness
	A Fascinating Open Problem
	How to prove that problem X is NP-complete?

	Tackling NP-Completeness
	Beyond class NP
	Tips and Tricks
	6212 Solution Process
	Phase 1 – Define Your Problem
	Phase 2 – Solve Your Problem

	Learning to Learn
	(Last, but not Least!) People Matter

