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ALGORITHMIC TECHNIQUES 

Divide and Conquer 

Generalization Step 
Solve(P)→Solve(P,Start,End) 

Algorithm 
divide_conquer(input I) 
   if (input is small enough) - solve directly 
   // THE DIVIDE STEP 
  divide I into parts I1, I2,... 
  call divide_conquer(I1) 
  call divide_conquer(I2) 
  ... 
  // THE MERGE STEP 
  Merge subsolutions 

Recurrence Relations 
Based on how you divide (number of 

subproblems, and size of each subproblem) and 

how long it takes to merge the subsolutions, the 

recurrence relation is established, which then 

determines the overall running time of your 

solution.  Examples: 

• T(n) = 2 T(n/2) + cn  O(n log n) 

[Two subproblems of half the original 

size, linear time in dividing and merging] 

• T(n) = T(9n/10) + cn  O(n)  

• T(n) = 8 T(n/2) + cn  O(n3)  

• T(n) = 2 T(n/2) + cn2  O(n2) 

Greedy Method 
Build a complete solution by making a sequence 

of “best selection steps”. 

Works well if the problem exhibits “greedy 

choice property”, that is, globally optimal 

solution can be arrived at by making a locally 

optimal choice.  For example: An optimal 

minimum spanning tree can be built by selecting 

the smallest weighted “eligible” edge. 

Dynamic Programming 
Compute solution bottom up by combining 

subsolutions.  Store the results of subsolutions to 

avoid recomputation of subproblems. 

Think of DP when you see (i) optimal 

substructure and (ii) overlapping subproblems. 

Template (Mnemonic: NORA) 

1. Develop a Notation that can express a 

subsolution for the given problem: “Say s(P,i) 

represents the solution to problem instance 

P, assuming we start at i.” 

2. Check if the Optimal Substructure (Principle 

of Optimality) holds.  

3. Develop a Recurrence relation that allows 

building a solution from the subsolutions. 

4. Develop the bottom up Algorithm. 

For example: Given n real (positive/negative) 

numbers A(1) ... A(n), determine a contiguous 

subsequence A(i) ... A(j) for which the sum of 

elements in the subsequence is maximized.   

Branch and Bound 
More general technique, can be used to solve 

many optimization problems, even those that are 

NP-complete. 

Basic Template 
1. Describe the solution space as a graph 

2. Do a Breadth First Search 

3. Evaluate nodes for upper and lower bounds 

4. Branch into the “best” node 

5. Prune nodes via elimination rules 

6. Terminate if performance goals met 

How to develop bounds 
Branch and Bound depends upon being able to 

“bound” nodes effectively in the search tree. 

For a minimization problem: Find a lower bound 

by making some observation that cost can be no 

lower than value “x”, usually by relaxing the 

problem so that a simpler approach (say greedy) 

might work, even though the solution may not be 

a feasible solution to the original problem. 

Find an upper bound by using a known solution. 

For maximization problem: Lower bound is any 

feasible solution.  Upper bound is theoretical. 

Termination criteria:  B&B is used for hard 

problems, so keep an eye on target performance 

of the solution.  E.g., if it is OK to find a solution 

that costs at most 5% more than optimal, then 

use that to find terminating conditions. 

Backtracking 
A problem like Sudoku, or knapsack can be 

solved by building partial solutions, discarding 

the ones that don’t work and backtracking in the 

solution search tree to try a different solution.  

Depending on the discarding mechanism, this 

can be very efficient technique! 
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PROBLEM COMPLEXITY AND CLASSES 

NP-Completeness 
We consider two classes of problems: P and NP.  

Class P consists of problems that can be solved in 

polynomial time.  Class NP consists of problems, 

for which you can verify a given solution in 

polynomial time.  An NP-Complete problem is a 

problem which can be considered a “central” (or 

complete) problem for all problems in class NP.  

Class “NPC” is the class of all NP-complete 

problems.  Essentially, class NPC consists of hard 

problems for which polynomial time algorithms 

are not known to exist.  The reason we try to 

find if a problem is NP-complete is to determine 

if it is hard.  If we prove that a given problem is 

NP-complete, we can convince others, if 

required, that the problem is hard, and our 

efforts are more justified in other ways of 

tackling NP-Completeness. 

A Fascinating Open Problem 
If you (or someone else) finds a polynomial time 

algorithm for an NP-complete problem, that is 

equivalent of finding a polynomial time algorithm 

for ALL problems in NP, and will also imply that 

classes P and NP are in fact the same.  THAT 

WILL BE HUGE!  You will be rich! $$$$.  

Similarly, if you find that a particular NP-

complete problem cannot be solved in 

polynomial time using our current computation 

models – that would prove that these classes are 

in fact distinct.  That would also be huge! 

How to prove that problem X is NP-

complete? 
To prove that problem X is NP-complete, we 

have to start with a known NP-complete 

problem, and reduce that to our problem X.   

Mnemonic: SoX – ReStoX (SAT Outside the box – 

X Inside – Reduce SAT to X).  

Tackling NP-Completeness  
Strategy 1 – “Context”: Look for simplifications 

in data and context that render the problem 

solvable in polynomial time. 

Strategy 2 – “Find low Exponent”: Look for 

improvements in running time which make the 

exponential “bearable.” 

Strategy 3 – “Approximate and Refine”: 

Understand performance bounds that are 

acceptable practically, and use approximation 

algorithms. 

Beyond class NP  
Some problems are provably undecidable, 

irrespective of the time we spend on it. 

APPLYING ALL THIS 

Tips and Tricks 
1. Remember the time when you brought that 

hamster home.  When you named it Pete, 

your family knew it was your pet, and it was 

going to stay.  Naming is your friend.  If you 

can name it, you can own it.  Start with a 

good notation: “Let S(n,m) represent ….”)   

2. Avoid premature optimizations, something 

that only work on some inputs. 

3. Generalization can help you in using divide 

and conquer and recursive solutions. 

6212 Solution Process 

Phase 1 – Define Your Problem 
1. Draw a box, with inputs and outputs 

2. (Important) Name the box (Hint: Generic 

word like “solver” is not a name.) 

Phase 2 – Solve Your Problem 
1. What is the brute force time complexity? 

2. Try different algorithmic design techniques 

and different data structures if needed. 

3. If the problem appears very hard, is it NP-

complete?  Can we prove that, and tackle its 

NP-completeness? 

Learning to Learn 
Don’t forget the Ebbinghaus forgetting curve.  If 

you review something 4 times, say once shortly 

after learning, once after a day, once after a 

week and another time after a month, there is a 

very good chance you will remember it forever. 

Your chance of learning and remembering 

something increases if you explain that to 

someone.  Volunteering to give a presentation on 

a topic is an excellent way to learn it even 

further. 

(Last, but not Least!) People Matter 
Don’t forget that a big part of graduate 

education is building your network of friends. 
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