Name:

CS 6212 - Final

Score: /60

C 6212 -

(60 points) (120 minutes)
Q 1-6 (5 points each): [Only write answers, NO explanations]
Questions 1, 2, 3: What is the time complexity of these algorithms/functions, in terms of n ? [Sum $+=y$ is a short form notation for Sum = Sum $+y$.]

```for (int i = 1 to n) { for (int j = i to n) { for (int k = j*j to n) { } Sum += a[i]*b[j]*c[k] }```	$\begin{aligned} & \text { int } j=5 \\ & \text { white }(j<\log n)\{ \\ & \text { int } k=5 \\ & \text { while }(k<n)\{ \\ & \text { Sum }+=a[j] * b[k] \\ & k=k \wedge 1.3 \\ & \} \\ & \}=1.3 * j \end{aligned}$	```function T(int n) int n1 = T(n/2) int n2 = n1*n1 + n1 int sum = 0 for i = 1 to n for j = 1 to n sum+=n1*i + n2*j return sum } // Assume T(1) = 1```

Q4: Give an example of a graph that has all of the following properties. (Give a single graph as the answer.)
(i) It does not have any articulation point.
(ii) It does not have a Hamiltonian cycle
(iii) It does not have a valid vertex coloring with only 2 colors.

Q5: Solve recurrence relation: $T(n)=T(n / 2)+O(\log n)$.

Q6: Solve recurrence relation: $T(n)=3 T(n / 2)+O(n \log n)$.

Q7 (10 points): ("Maximum Value But Limited Neighbors") You are given an array a[1..n] of positive numbers and an integer $k$. You have to produce an array $b[1 . . n]$, such that: (i) For each $j, b[j]$ is 0 or 1 , (ii) Array $b$ has adjacent 1 s at most $k$ times, and (iii) $\sum_{j=1}^{n}(a[j] * b[j])$ is maximized. For example, given an array $[100,300,400,50$ ] and integer $k=1$, the array $b$ can be: $[0110]$, which maximizes the sum to be 700. Or, given an array $[10,100,300,400,50,4500,200,30,90]$ and $k=2$, the array $b$ can be $[1,0,1,1$, $0,1,1,0,1]$ which maximizes the sum to 5500 .

Q8 (10 points): Describe a Branch \& Bound algorithm to solve the employee to project assignment reward problem. You are given $n$ employees and $n$ projects. You are also given an array A[i,j] which contains the revenue realized by that assignment of employee $i$ to project $j$. Describe your $B \& B$ solution to maximize the reward.

Q9 (10 points): Prove that the following problem is NP-complete: Given a graph G, and an integer $k$, find whether or not graph $G$ has a spanning degree where the maximum degree of any node is $k$.
(Hint: Show a reduction from one of the following known NP-complete problems: Vertex Cover, Ham Path or SAT.)

